US 2001/0029605 Al

determine if any of the components in the software package
are shared with other software packages registered in the
code store data structure (step 335). If so, the package
manager performs one of three basic actions depending on
the version information stored in the code store data base
entries for the component (step 337) If the newly stored
component is a newer version of the previously stored
component (step 339) and the code store data structure entry
for the previously installed software package that references
the older version does not indicate it is version dependent
(step 341), the package manager removes the older version
from the directory in which it is stored (step 343) and
updates the code store data structure entry for the previously
installed software package to point to the newer version
(step 345). If there is a version dependency noted, the
package manager leaves the older version in the directory
(step 347).

[0062] If the newly stored component is older that the
previously stored component (step 349) and the software
package does not indicate a version dependency (step 351),
the package manager removes the older version from the
newly created directory (step 353) and updates the code
store data structure entry for the newly installed software
package to point to the newer version (step 355). As before,
if there is a version dependency noted, the package manager
does nothing to the older version (step 347).

[0063] If the components are the same version, the pack-
age manager chooses one to remove from its directory (step
359) and updates the corresponding entry to point to the
other component (step 361).

[0064] In the embodiment in which the components are
stored in an uncompressed zip file, or the like, the package
manager uses the file directory to find the component to be
deleted within the file in the appropriate directory. The
package manager can, alternately, actually delete the com-
ponent from the file and update the file directory or mark the
component entry in the file directory as deleted depending
on the particular file structure employed to hold the com-
ponents.

[0065] In an alternate embodiment, the package manager
does not attempt to determine if there are mismatched
versions installed and each software package uses the ver-
sion of the component that is indicated by its entry in the
code store data structure.

[0066] Execution

[0067] Referring next to FIG. 3C, a flowchart of a method
to be performed by a client computer according to an
exemplary embodiment of the invention when a software
package registered through the package manager is executed
in the runtime environment is shown. This method is inclu-
sive of the steps or acts required to be taken by the software
package manager.

[0068] When the user requests execution of the software
package, the runtime environment invokes the package
manager (step 370) to locate the components necessary to
run the software. The package manager matches the soft-
ware package name to the corresponding entry in the code
store data structure (step 371) to determine the directory, or
directories, holding the components (step 373). In the
embodiment in which the components are stored in an
uncompressed zip file, or the like, the package manager uses

Oct. 11, 2001

the directory to find the particular components within the
file. The package manager returns the location of the com-
ponents to the runtime environment (step 375).

[0069] Uninstall

[0070] Finally, referring to FIG. 3D, a flowchart of a
method to be performed by a client computer according to
an exemplary embodiment of the invention when a software
package registered through the package manager is unin-
stalled is shown. This method is inclusive of the steps or acts
required to be taken by the software package manager.

[0071] When the user wants to uninstall a software pack-
age from the local computer, a standard uninstall routine
provided by the runtime environment invokes the package
manager to update the code store data structure accordingly
(step 380). The package manager removes the correspond-
ing software package entry in the code store data structure
(step 381). The package manager does not delete a compo-
nent from the directory unless no other installed software
package references it (step 383).

[0072] In one embodiment, the package manager scans
every entry in the code store data structure to determine if
another the entry for another software package references
the local directory holding the component in question. In a
first alternate embodiment, the package manager creates and
maintains a tree structure of all shared components, so it can
quickly determine if the component is shared with another
software package. In a second alternate embodiment, the
component is not deleted at the time the software package is
uninstalled but instead a “garbage collection” routine is
periodically run by the package manager. The garbage
collection routine uses the code store data structure to
determine if a component is referenced by any of the
software packages installed on the local computer. Those
components which are not referenced are then deleted.

[0073] Code Store Data Structure

[0074] FIG. 4 illustrates an exemplary embodiment of an
entry in the code store data structure 400 suitable for use by
the methods of the exemplary embodiments of the package
manager described above. Each entry contains, at a mini-
mum, five fields: a name field 401 for the distribution unit,
a version field 403 for the distribution unit, a component
field 405 that contains a list of the components in the
distribution unit, a location field 407 that contains the
location of the components on the client computer, and a
source field 409 that contains a pointer to the source of the
distribution unit, such as a URL for a downloaded distribu-
tion unit. If a component is a platform-specific (“native
code”) file, such as a Microsoft Windows DLL, the file name
is the component is stored in the component field. If a
component is a package of Java classes, the component field
contains the name of the Java package. In the case of a Java
package, the code store entry has the following additional
fields: a component version field 411 (which may be differ-
ent from the version of the distribution unit; both are used by
the package manager in resolving version dependencies),
and a component type field 413 that indicates what type of
Java classes the package contains, i.e., system, application,
etc., both shown in phantom in FIG. 4 An optional data
signature field 415, also shown in phantom, contains a
digital signature affixed to the distribution unit, if it was
signed. As well be familiar to one of skill in the art, the



